The Budker Institute participation in the largescale Research Infrastructures Projects

Vitaly Vorobyev

BINP

December 17th, 2021

BINP Overview

- + Location: Novosibirsk, Russia
- + Main research areas:
 - 1. High energy physics: experiments KEDR, CMD-3, SND
 - 2. Physics and technology of e^+e^- colliders: injection complex VEPP-5, colliders VEPP-2000 and VEPP-4M
 - 3. Synchrotron radiation and free electron laser (FEL)
 - 4. Fusion research: GOL and GDL facilities
- + Other activities:
 - 5. Industrial accelerators
 - 6. Physics for medicine and safety
 - 7. Theoretical physics
 - 8. Participating in International collaborations: CERN, DESY, Frascati LNF, Fermilab, SLAC, KEK, ...

- + BINP was found in 1958 by Gersh Budker
- + About 2900 employers in 2021:
 - + 1230 in scientific laboratories
 - + 700 in experimental workshop
 - + 220 in administration
 - + 750 in services

Gersh Budker (1918-1977)

BINP scientific council – "The Round Table"

Pavel Logachev, BINP director since 2015

LIST-11 facilities at BINP

+ Complex of Long Open Traps

+ Complex of e⁺e⁻ colliders
 VEPP-4M and VEPP-2000

- + Siberian Synchrotron and Terahertz Radiation Centre
 - + Novosibirsk Free Electron Laser, terahertz range (NovoFEL)

BINP Experimental Workshop

- + Three sites with total area of 60000 m^2
- + More than 100 technological divisions
- + More than 400 processing units

Insertion devices for SR. Made in BINP

e⁺e⁻ colliders in BINP today

Synchrotron radiation @ VEPP-3 and VEPP-4M and NovoFEL

NovoFEL 2020 statistics

- 11 user stations
- Total operation: 2220 hours
- Users at stations: 1137 hours
- Collaboration with 15 organizations

SR Usage time (hours)							
	Energy	2019	2020				
	1.2 GeV	205	60				
VEPP-3	2.0 GeV	750	540				
/FPP-4M -	1.9 GeV	170	84				
	4.5 GeV	620	324				
10 user stations							

SR 2020 statistics

- 22 peer-review papers
- >40 proceedings
- Collaboration with 38 organizations

X-ray Lithography and LIGA-technology indico.inp.nsk.su/event/24/contributions/1819/

The NICA collider at JINR

April 2017 delivery cooler from BINP to JINR

- + BINP in NICA
 - RF system
 - Electronic cooling
 - Transportation channels
 - Beam dynamics, polarized beams, sensors, electronics, ...

FAIR at GSI

- + Magnet for the CBM detector
- + Total contracts: 82M euro till 2025

ITER

- + BINP in ITER
- + Total contracts: about15M euro till 2025 г.

+ Clean assembly hall in BINP

SKIF – Siberian circular low emittance light SOURCE + Electron's energy 3 GeV

SKIF Configuration and parameters

+ Linac 200 MeV

- + Synchrotron-booster with 3 GeV energy and 158.7 m circumference
- + 3 GeV storage ring, 16 × 6 m straight sections, 476 m orbit length, 73.2 pm natural emittance.
- $+ \geq 30$ beamlines.

End of 2023 – first beam End of 2024 – 6 experimental stations

SKIF Status

- + Construction and engineering design is finished
- + Construction company is selected and approved by the Government
- + Groundbreaking ceremony was held in September 2021
- + Construction company started the site preparation
- + Signed two main contracts with BINP for injector, main ring and insertion devices
- + Injector production is underway, storage ring in the final design stage
- + About ~70% of raw material procurement orders is signed

15

٠

• Universal particle detector

• The SCT project is being developed as *a typical* mega-science project in high energy physics

The SCT Partnership

✓ The SCT Partnership is launched on November 18th, 2021

 $\circ\;$ The Partnership is devoted to design and promotion of the SCT experiment

- 1. Minimal formal structure
 - o Institutional board (IB) the main body of the Partnership
 - Two spokespersons
- 2. A partner is a research group
 - $\circ~$ Only one group per organization is allowed
 - $\circ~$ A LoI must be signed to apply to join the Partnership

Pavel Pakhlov (LPI, HSE) The SCT Russian Spokesperson

Ivan Logashenko (BINP, NSU) The SCT IB Chair T

To be elected (???) The SCT International Spokesperson

Some participants of the 1st IB meeting (Novosibirsk November 18th, 2021)

Conclusions

- 1. BINP is an active player in the national and international research infrastructure fields
- 2. BINP holds several RIs and contributes to many external projects

The SCT Partnership: founding partners

1. The JLU group (2021-09-21)

- Prof. Michael Düren
- Prof. Joybrato Mukherjee (JLU President)
- 2. The NSTU group (2021-09-24)
 - Dr. Alexander Barnyakov
 - Prof. Anatoly Bataev (NSTU Rector)
- 3. The NSU group (2021-10-11)
 - Prof. Alex Bondar
 - Prof. Mikhail Fedoruk (NSU Rector)
- 4. The BINP group (2021-10-13)
 - Dr. Ivan Logashenko
 - Dr. Pavel Logachev (BINP Director)

5. The LPI group (2021-10-14)

- Dr. Pavel Pakhlov
- Dr. Nikolay Kolachevsky (LPI Director)

- 6. The SINP group (2021-10-29)
 - Prof. Eduard Boos (SINP Director)
- 7. The HSE group (2021-11-15)
 - Prof. Tagir Aushev
 - Dr. Andrey Ustyuzhanin
 - Dr. Nikita Anisimov (HSE Rector)
- 8. The JINR group (2021-11-17)
 - Dr. Alexey Zhemchugov

9. The BIRP VNIIEF group (2021-11-16)

- Dr. Nikolay Zavyalov (BIRP Director)
- 10. The Cinvestav group (2021-11-12)
 - Prof. Eduard De La Cruz Burelo
 - Prof. Gabriel López Castro (Cinvestav Academic Vicepresident)

Novosibirsk FEL user facility has three FELs, installed on the first, second and fourth orbits of the dedicated energy recovery linac (ERL). These FELs are the world's most powerful (in terms of average power) sources of coherent narrow-band (less than 1%) radiation in their wavelength ranges. The Novosibirsk ERL is the first multiturn ERL in the world. The facility has been operating for users of terahertz radiation since 2004. It is one of the partners of FELs of Europe collaboration.

 $\cdot 10^{31} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$

0.5→1.4

1.2→2.0

0.5

Luminosity

* Accelerator physics activity

Synchrotron radiation

VEPP-3, 74 m			VEPP-4M, 366 m			
		1.2 GeV	2 GeV	1.9 GeV	2.5 GeV	4.5 GeV
		100 nm∙rad	290 nm∙rad	28 nm∙rad	50 nm∙rad	160 nm∙rad
	200 mA @ 1÷2 bunches			25 mA @ 1÷25 bunches		
	1 LIGA-technology and X-ray lithography.		Metrology experiments.			
	2	2 Fast dynamic process.		Phase contrast microscopy, micro-tomography and hard X-ray fluorescence.		
	3	Precise diffraction and anomalous scattering.		Nanosecond spectroscopy of fast processes.		
	4	X-ray fluorescence analysis.		Material study under extremal conditions		
	5	5 High pressure diffraction.		Material study for thermonuclear applications		
	6	X-ray microscopy ar	nd micro-tomography.			
	7	Time resolved diffra	ction.			
	8	Time resolved lumin	escence.			
	9	Precise diffraction.				
10 ¹³ 10 ¹³ 10 ¹³ VEPP-4, 4.6 GeV Wiggler 1.3 T, 9 poles Very 3.2 GeV entres 2 T Very 3.2 GeV entres 2 T entres 2				ISSV 1027-4510, Journal of Surface Investigation: K-ray, Synchromov and Neurons Techniques, 2020, Vol. 14, No. 1, pp. 150–154. © Pielader Publishing: Ltd., 2020. Resolution Text © The Author(2), 2020, published in Proverkhmuer, 2020, No. 2, pp. 34–38. Experiments with Synchrotron Radiation at the VEPP-4M G. Baranov*, V. Borin ^{a, b} , A. Zhuravlev*, K. Zolotarev*, S. Karnaev*, K. Kuper*, E. Levichev*, O. Meshkov*, ^b , S. Mishnev*, I. Nikolaev*, A. Nikolaev*, A. Nikolaev*, and P. Piminov*. * ^a Budker Institute of Nuclear Division, Storate University, Novosibirsk, 630090 Russia ^b Novosibirsk: State University, Novosibirsk, 500090 Russia ^a e-mail: pinninov@inp.nsk.su Received May 25, 2019; revised June 10, 2019; accepted June 14, 2019		
	10 ³	0 ⁰ 10 ¹ Ene	10 ²		ISSN 1027-4510, Journal of Sorface Investigation: X-ray, Spectratorn on Russian Text © The Author(s), 2020, published in PoverAtmost', 2020	nd Neuron Techniques, 2020, Vol. 14, No. 6, pp. 1290–1293, & Pielades Publishing, Lul., 2020. No. 12, pp. 30–53.
¥1.5 tuestino uno 0.0 1		25 mA i	n 21 bunch (45 ns)	© VEPP-4M	Hybrid Nine-Pole Wiggler at the VEPI G. H. Baranov ^{«, b.} *, K. E. Cooper [«] , P. A. A. N. Sh ^a Institute of Nuclear Physics, Siberian Branc ^b Novosibirk State ⁷ ce ^c Institute of Catalysis, Siberian Branc [*] c- Received January 12, 202	as a Source of "Hard" X-ray Radiation P-4 Accelerator Complex Piminov, P. D Vobly", A. A. Legkodymov", L. I. Shekhtman", makov", and E. B. Levichev" anch, Russian Academy of Sciences, Novosibirsk, 630090 Russia hncal University, Novosibirsk, 630073 Russia h, Russian Academy of Sciences, Novosibirsk, 630090 Russia alil g.n. baranov@inp.nsk.su ; revised March 14, 2020; accepted March 17, 2020
		Separa				